
CNT 4603: Scripting – Windows PowerShell – Part 5 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Fall 2012

Scripting – Windows PowerShell – Part 5

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603/fall2012

http://www.cs.ucf.edu/courses/cnt4603/spr2012

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 2 Dr. Mark Llewellyn ©

Code Signing

• In the second set of notes on PowerShell we discussed the execution

policy which is part of the security built-in to PowerShell.

• We modified PowerShell’s default setting of Restricted, which prevents

PowerShell from running any scripts (it is restricted to running in an

interactive mode only).

• We changed the setting using the set-executionpolicy cmdlet to

RemoteSigned, which allowed locally created scripts to be loaded and

executed without being digitally signed.

• The other two options are: AllSigned, which is a notch under

Restricted, in that all scripts must be digitally signed by a publisher you

trust in order to be loaded and executed. The Unrestricted option

allows any script to be executed but for non-local scripts the user is

prompted for an action.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 3 Dr. Mark Llewellyn ©

Code Signing

• In short, code signing is the process of digitally signing scripts,

executables, dynamic link libraries (DLLs), and so forth to establish a

level of trust for the code.

• The trust granted to digitally signed code is based on two assumptions.

– One, a signed piece of code ensures that the code hasn’t been altered or

corrupted since being signed.

– Two, the digital signature serves to prove the identity of the code’s author,

which helps you to determine whether the code is safe for execution.

• These two assumptions are a way to ensure the integrity and

authenticity of the code. However, these assumptions alone are

no guarantee that signed code is safe to run.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 4 Dr. Mark Llewellyn ©

Code Signing

• For these two assumptions to be considered valid, you need the digital

signature and the infrastructure that establishes a mechanism for

identifying the digital signature’s originator.

• A digital signature is based on public key cryptography, which utilizes

an algorithm for encryption and one for decryption. The algorithms

generate a key pair consisting of a private key and a public key. The

private key is kept secret so that only the owner has access to it, but the

public key can be distributed to other entities. Some form of secure

interaction is then required between other entities and the key pair

owner. Depending on the type of interaction, one key is used to lock

(encrypt) the communication and the other key is used to unlock

(decrypt) the communication.

• In digital signatures, the private key is used to generate a signature, and

the public key is used to validate the generated signature.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 5 Dr. Mark Llewellyn ©

Code Signing

• The process is as follows:

1. A one-way hash (message digest, fingerprint, or compression function),

which is a cryptographic algorithm that turns data into a fixed-length

binary sequence (one-way means that it difficult to derive the original

data from the resulting sequence) of the content being signed is generated

by using a cryptographic digest.

2. The hash is then encrypted with the private key, resulting in the digital

signature.

3. The hash content is sent to the recipient.

4. The recipient creates another one-way hash of the content and decrypts

the hash by using the sender’s public key.

5. Finally, the recipient compares the two hashes. If both hashes are the

same, the digital signature is valid and the content has not been modified.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 6 Dr. Mark Llewellyn ©

Code Signing

• To associate an entity, such as an organization, a person, or a

computer with a digital signature, a digital certificate is used.

• A digital certificate consists of the public key and identifying

information about the key pair owner.

• To ensure a digital certificate’s integrity, it is also digitally signed.

• A digital certificate can be signed by its owner or a trustworthy third

party called a certificate authority (CA).

• The act of associating code with the entity that created and published

it removed the anonymity of running code. Furthermore, associating

a digital signature with a code-signing certificate is much like using

a brand name to establish trust and reliability.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 7 Dr. Mark Llewellyn ©

Code Signing

• Therefore, armed with this information, users of PowerShell scripts

(or any script in general) can make informed decisions about running

a script.

• In a nutshell, this is why code signing is an important aspect to

system administration activities and in particular to the PowerShell

security framework.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 8 Dr. Mark Llewellyn ©

Obtaining A Code Signing Certificate

• There are two methods for obtaining a code-signing certificate:

generating self-signed certificates and using a CA from a valid

public key infrastructure (PKI) like Veri-Sign.

• Generating a self-signed certificate for signing your PowerShell

scripts and configuration files is simpler and quicker and has the

advantage of not costing anything.

• However, no independent third party verifies the certificate’s

authenticity, so it doesn’t have the same level of trust that’s expected

from code signing. As a result, no other entity would trust your

certificate by default. To distribute your PowerShell script to other

machines, your certificate would have to be added as a trusted root

CA and a trusted publisher.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 9 Dr. Mark Llewellyn ©

Obtaining A Code Signing Certificate

• Although changing what an entity trusts is possible, there are two

problems.

• One, entities outside your sphere of control might not choose to trust

your certificate because there’s no independent method for verifying

who you are.

• Two, if the private key associated with your self-signed certificate

becomes compromised or invalid, there is no way to manage your

certificate’s validity on other entities.

• Given these problems, self-signed certificates should be limited to

local machines or for testing purposes only.

• If you plan to have your scripts used in an enterprise or the public

realm, the second method of using a CA from a PKI should be used.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 10 Dr. Mark Llewellyn ©

Generating a Self-Signed Certificate

• Even though the second method is the preferred method for public

realm scripting, we’ll focus on the first method here so that you

can get some practice creating scripts that are digitally signed and

then we’ll also be able to once again modify the execution policy

of PowerShell to require all scripts having a digital signature.

• The method of creating a self-signed certificate is based on using

the makecert utility, which is part of the .NET Framework

Software Development Kit (SDK).

• Follow the steps on the next page to use this utility to create your

own digital signature.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 11 Dr. Mark Llewellyn ©

Generating a Self-Signed Certificate

1. Download the latest Microsoft .NET Framework SDK available at:

www.microsoft.com, and searching for “Microsoft .NET Framework

SDK”. The current version is 2.0.

2. Install the SDK on the machine where you want to generate the self-

signed certificate. Let’s use one of our virtual machines for this, like
Mark-Server1, since that’s where you’ve installed PowerShell.

3. Locate the makecert utility. The default location is C:\Program

Files\Microsoft .NET\SDK\v2.0\bin.

4. Open a command prompt and change the working directory to this

location using the cd command. See page 12.

5. Create a self-signed certificate using the command illustrated on

page 12.

http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 12 Dr. Mark Llewellyn ©

Makecert –r –pe –n “CN= choose a name” –b beginning date –e ending date –eku 1.3.6.1.5.5.7.3.3 –ss My

Digital certificate was

successfully created

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 13 Dr. Mark Llewellyn ©

Run this cmdlet in

PowerShell to see

your self-signed

digital certificate.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 14 Dr. Mark Llewellyn ©

Signing PowerShell Scripts

• When signing a PowerShell script, you use the set-

AuthenticodeSignature cmdlet, which takes two required

parameters.

• The first parameter, filePath, is the path and filename for the

script to be digitally signed.

• The second parameter, certificate, is the X.509 certificate

used to sign the script.

• To obtain the X.509 certificate in a format the set-

AuthenticodeSignature cmdlet understands, you retrieve

the certificate as an object with the get-ChildItem cmdlet, as

shown on the next page.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 15 Dr. Mark Llewellyn ©

Signing PowerShell Scripts

Actual command string is:

Set-authenticodesignature –filePath <filename> –certificate @(get-childitem cert:\CurrentUser\My

–codeSigningCert)[0] –includeChain “All”

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 16 Dr. Mark Llewellyn ©

Signing PowerShell Scripts

• To retrieve the certificate you want from the user’s certificate

store, you use the get-childitem cmdlet with the

codeSigningCert switch parameter.

• This switch parameter can only be used with the PowerShell

Certificate provided and acts as a filter to force the get-

childitem cmdlet to retrieve only code-signing certificates.

• To ensure that the entire certificate chain is included in the digital

signature, the includeChain parameter is used.

• After the set-authenticodesignature cmdlet has been

executed successfully, the signed file has a valid digital signature

block containing the digital signature appended to it.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 17 Dr. Mark Llewellyn ©

Signing PowerShell Scripts

• The digital signature block in a PowerShell script is always the

last item in the script and can be found easily because it is

enclosed between SIG # Begin signature block and

SIG # End signature block , as shown in the example

script we just digitally signed (see next page).

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 18 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 19 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

• To verify the digital signature of PowerShell scripts, you use the

get-authenticodesignature cmdlet.

• This cmdlet returns a valid status or an invalid status, such as

HashMismatch, indicating a problem with the script.

• Page 20 illustrates verifying a script which contains a valid digital

signature.

• Page 21 illustrates a script that was modified after the digital

signature was applied.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 20 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

NOTE: Until you complete

the steps to trust the digital

certificate, the status here

will be “Unknown Error”.

This screen shot was taken

after I’d registered the CA.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 21 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 22 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

• Once you begin to digitally sign your scripts you’ll need to reset

the PowerShell execution policy to AllSigned.

• The next page illustrates doing this using the set-

executionpolicy cmdlet.

• Once this is done, I attempted to run the modified version of the

digitally signed script. Notice that PowerShell will not allow it to

execute due to the invalid signature.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 23 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 24 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

• What happens if we attempt to execute a valid digitally signed

script in PowerShell now, assuming that we’ve changed the

execution policy to AllSigned?

It still doesn’t

work!!!!

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 25 Dr. Mark Llewellyn ©

Verifying A Digital Signature In PowerShell

• The problem, as you can see from the PowerShell script output, is

that we’ve created the digital signature and signed the script, but

the we haven’t verified that we trust the creator of the signature

yet.

• To do this go to the file that contains the digital signature and

right click on it and select Properties.

• Follow the steps on the next few pages to

• You’ll see a tab which is titled Digital Signatures. Select this tab.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 26 Dr. Mark Llewellyn ©

1. Right click on the file name and

select Properties to see this

dialog.
2. Select the Digital Signatures

tab.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 27 Dr. Mark Llewellyn ©

3. Highlight the name of signer

you wish to trust.
4. You should see this dialog now.

Click View Certificate.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 28 Dr. Mark Llewellyn ©

5. Click the Install Certificate

button. 6. The Certificate Import Wizard

will now run. Click Next.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 29 Dr. Mark Llewellyn ©

7. Choose your option here. I just let mine default to automatically selecting the

certificate store based on the type of certificate. Then click Next.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 30 Dr. Mark Llewellyn ©

8. Click Finish and you’re done

(well almost – see next page)

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 31 Dr. Mark Llewellyn ©

9. A security warning will appear. Read it and then click Yes.

CNT 4603: Scripting – Windows PowerShell – Part 5 Page 32 Dr. Mark Llewellyn ©

10. Now go back to PowerShell and attempt to rerun the digitally signed script. You will

see the following message appear. Click A to always run scripts with this digital

certificate, subsequent runs will not issue this prompt. Clicking the A option places

the publisher’s certificate in the Trusted Publisher’s certificate store. Also, the root

CA’s certificate is placed in the Trusted Root Certification Authorities certificate

store, if it isn’t already there.

